A4 Conference proceedings

Magnetic moment of single vortices in YBCO nano-superconducting particle: Eilenberger approach


Open Access publication

LUT Authors / Editors

Publication Details
Authors: Zakharchuk I., Sharafeev A., Belova P., Safonchik M., Traito K. B., Lähderanta E.
Publication year: 2013
Language: English
Related Journal or Series Information: IOP Conference Series: Materials Science and Engineering
Volume number: 49
Issue number: 1
JUFO-Level of this publication:
Open Access: Open Access publication

Abstract

Temperature dependence of single vortex magnetic moment in nanosize superconducting particles is investigated in the framework of quasiclassical Eilenberger approach. Such nanoparticles can be used for preparation of high-quality superconducting thin films with high critical current density. In contrast to bulk materials where the vortex magnetic moment is totally determined by flux quantum, in nano-sized specimens (with characteristic size, D, much less than effective penetration depth, λeff) the quantization rule is violated and magnetic moment is proportional to D2eff2(T). Due to strong repulsion between vortices in nanoparticles only a single vortex can be trapped in them. Because of small size of particles the screening current of the vortex is located near the vortex core where the current is quite high and comparable to depairing currents. Therefore, the superconducting electron density, ns, depends on the current value and the distance from the vortex core. This effect is especially important for superconductors having gap nodes, such as YBCO.

The current dependence of ns in nanoparticles is analogous to the Volovik effect in flux-line lattice in bulk samples. The magnitude of the effect can be obtained by comparing the temperature dependence of magnetic moment in the vortex and in the Meissner states. In the last case the value of screening current is small and superconducting response to the external field is determined by London penetration depth. Because of importance of nonlinear and nonlocal effects, the quantum mechanical Eilenberger approach is applied for description of the vortex in nanoparticles. The flattening of 1/λeff2(T) dependence has been found. A comparison of the theoretical results with experimental magnetization data in Meissner and mixed states of YBCO nanopowders has been done. The presence of nonlinear and nonlocal effects in vortex current distribution is clearly visible. The obtained results are important for the description of pining in nanostructured high-Tc thin films.


Last updated on 2017-22-03 at 14:50