A1 Journal article (refereed), original research

Visual tool for real-time monitoring of membrane fouling via Raman spectroscopy and process model based on principal component analysis

Open Access publication

Publication Details
Authors: Virtanen Tiina, Reinikainen Satu-Pia, Lahti Jussi, Mänttäri Mika, Kallioinen Mari
Publisher: Nature Publishing Group: Open Access Journals - Option C / Nature Publishing Group
Publication year: 2018
Language: English
Related Journal or Series Information: Scientific Reports
Volume number: 8
Start page: 1
End page: 8
Number of pages: 8
ISSN: 2045-2322
JUFO-Level of this publication: 2
Open Access: Open Access publication

Membrane fouling, i.e. accumulation of unwanted material on the surface of the membrane is a significant problem in filtration processes since it commonly degrades membrane performance and increases operating costs. Therefore, the advantages of early stage monitoring and control of fouling are widely recognized. In this work, the potential of using Raman spectroscopy coupled to chemometrics in order to quantify degree of membrane fouling in real-time was investigated. The Raman data set collected from adsorption experiments with varying pHs and concentrations of model compound vanillin was used to develop a predictive model based on principal component analysis (PCA) for the quantification of the vanillin adsorbed on the membrane. The correspondence between the predicted concentrations based on the PCA model and actual measured concentrations of adsorbed vanillin was moderately good. The model developed was successful in monitoring both adsorption and desorption processes. Furthermore, the model was able to detect abnormally proceeding experiment based on differentiating PCA score and loading values. The results indicated that the presented approach of using Raman spectroscopy combined with a PCA model has potential for use in monitoring and control of fouling and cleaning in membrane processes.

Last updated on 2019-13-03 at 12:00